Comprehensive Tools for Remediation Support - Can You Measure Progress?

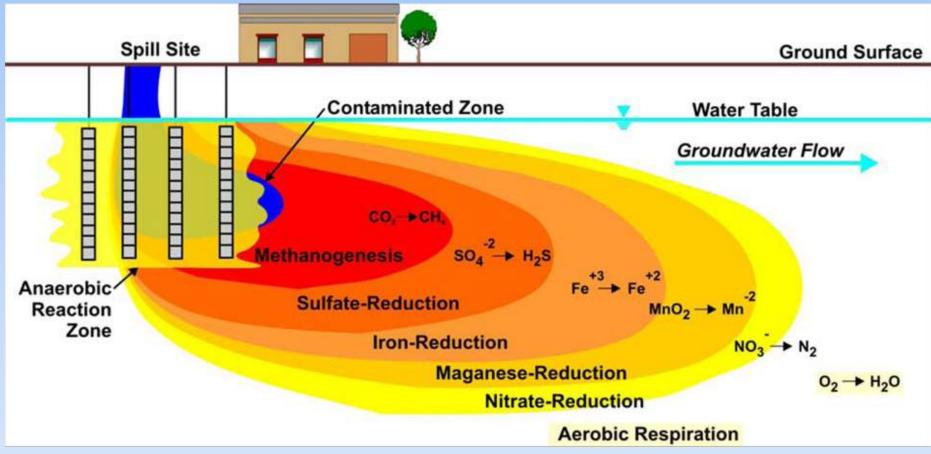
Chlorinated Hydrocarbon Remediation Short Course 2018

Comprehensive Tools for Remediation Support

- Introduction
- Monitored Natural Attention Parameters
- Compound Specific Isotope Analysis
- Chlorinated Forensics
- Conclusion

Monitored Natural Attenuation (MNA)

- Natural attenuation is "a variety of physical, chemical, or biological processes that, under favorable conditions, act without human intervention to reduce the mass, toxicity, mobility, volume, or concentration of contaminants in soil or groundwater."¹
- Classified as passive remediation/ passive bioremediation
- Cost effective



MNA – cont'd

- Limitations
 - Slowest option for site cleanup
 - Regulatory roadblocks
 - Complicated sites require some level of expertise to prove passive remediation is occurring
- Monitoring is key into interpreting the effectiveness
- MNA parameters detail the stage

Plume Evolution

Common MNA Parameters

Parameter	Data use	Analyte trend	Values of Degrade.	Process
Dissolved Oxygen	Generally indicate anaerobic pathway	Decreases	<0.5 mg/L	Aerobic Respiration
Nitrate	Electron acceptor for microbial resp.	Decreases	<1 mg/L	Denitrification
Fe 2+	Indication of Fe3+ reduction during microbial degradation of organic compounds in the absence of dissolved oxygen, nitrate, and Mn(IV).	Increases	> 1 mg/L	Fe 3+ reduction
Sulfate	Electron acceptor for anaerobic respiration	Decreases	<20 mg/L	Sulfate Red.
Methane	The presence of methane suggests organic carbon degradation via methanogenesis	Increases	>0.5 mg/L	Methanogenesis
Chloride	General water quality parameter used as a marker to verify that site samples are obtained from the same ground water system. Final product of chlorinated solvent reduction	Increases	>2 times background	Reductive Dechlorination or Direct Oxidation of Chlorinated Compound

Source: Adapted from Guidance on Developing a Monitored Natural Attenuation Remedial Proposal for Chlorinated Organics in Ground Water, North Carolina Hazardous Waste Section, October 4, 2000

MNA – Cont'd

- Additional Info Needed
 - Microbial Analysis
 - Qualification and Quantification
 - Ensuring you have the right bugs at the right site dhc,
 dhb
 - Electron Donor
 - Re-amendment

MNA - Cont'd

- Dissolved gases
 - Carbon dioxide evaluate microbial breakdown of contaminant (aerobic)
 - Methane, ethene, ethane (MEE)
 - Methane by product of the reactions that facilitate reductive dechlorination
 - Ethane/Ethene end products of dechlorination
 - Hydrogen monitors degradation
 - Propane, butane(s) monitors specific breakdown

Dissolved Gases – Reporting Limit Comparison

Analyte	RSK-175 Method	Pace Energy – AM 20 GAX	
Methane	10 μg/L	0.5 μg/L	
Ethane	10 μg/L	0.1 μg/L	
Ethene	10 μg/L	0.1 μg/L	
Acetylene	N/A	0.5 μg/L	
Carbon Dioxide	N/A	5 mg/L	
Carbon Monoxide	N/A	1 mg/L	
Nitrogen	N/A	2 mg/L	
Oxygen	N/A	0.5 mg/L	
Propane	N/A	0.1 μg/L	
Propene	N/A	0.1 μg/L	
Iso-Butane	N/A	0.2 μg/L	
N-Butane	N/A	0.2 μg/L	

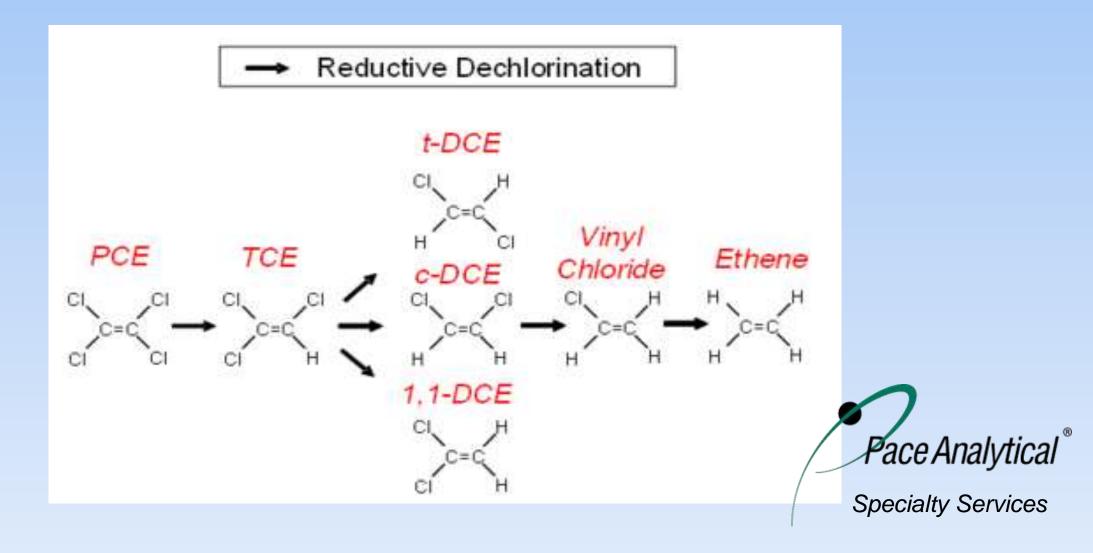
MNA – Volatile Fatty Acids (VFAs)

- VFAs are created when and injected substrates are broken down by microbial community via fermentation
- Useful when monitoring breakdown and microbial activity
- Useful when tracing amended water

Low Level Reporting Limits

- Pace Energy provides the lowest detection limits for MEE and VFAs in the industry
- What does this mean?
 - Edge of plume amendment detection
 - Is degradation still occurring?
 - Is plume properly constrained
 - Monitoring of hardest 5-10%

VFAs – Reporting Limit Comparison


Analyte	VFA – AM 21 G	LL VFA – AM23 G
Acetic	5.0 mg/L	0.2 mg/L
Propionic	5.0 mg/L	0.1 mg/L
Butyric	5.0 mg/L	0.1 mg/L
Pyruvic	5.0 mg/L	0.1 mg/L
Lactic	10.0 mg/L	0.1 mg/L
Iso-Pentanoic	N/A	0.1 mg/L
Pentanoic	N/A	0.1 mg/L
iso-Hexanoic	N/A	0.2 mg/L
Hexanoic	N/A	0.2 mg/L
Formic	N/A	0.1 mg/L

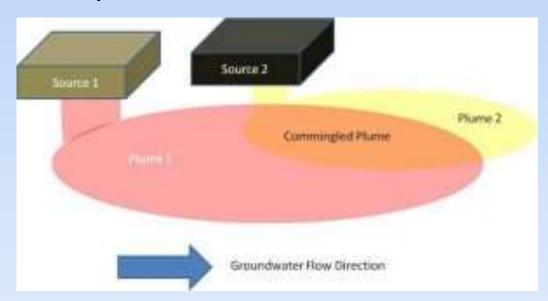
Compound Specific Isotope Analysis (CSIA)

- Using isotopic ratios of certain elements within distinct compounds provides information that analytical concentrations cannot
- Ratios reflect relationship of heavier isotopes to lighter isotopes
 For remediation efforts:
- Use of carbon isotopes to prove degradation
- Rate of degradation

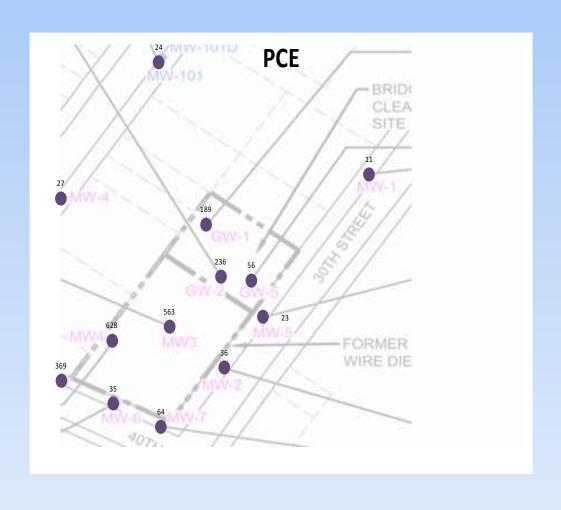
CSIA – Degradation Pathway

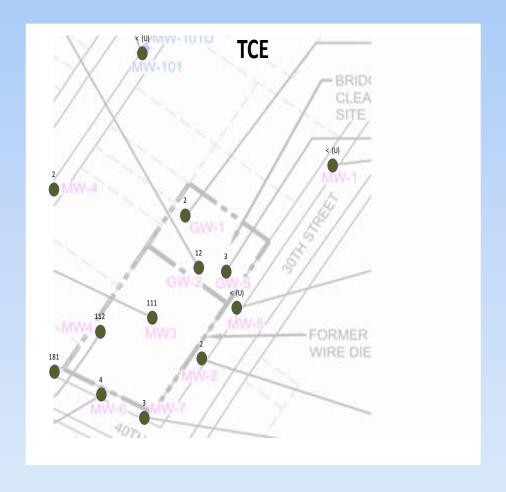
CSIA – cont'd

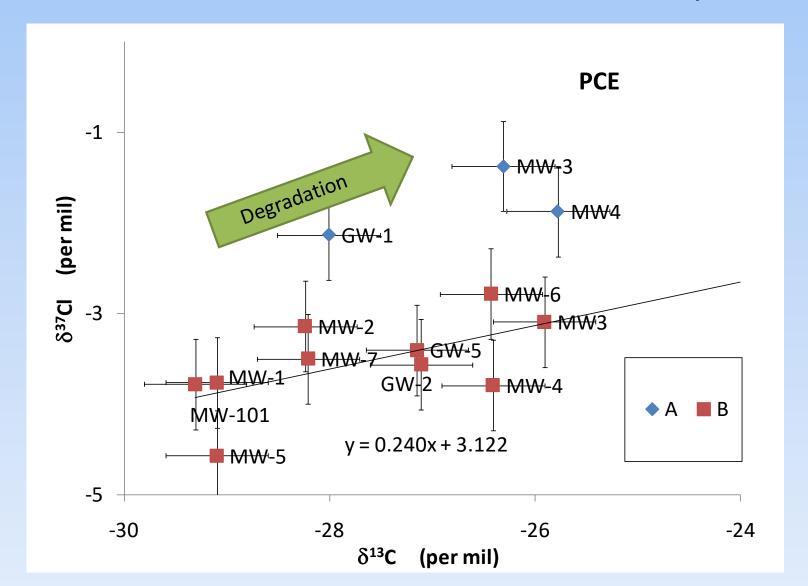
- For MNA, CSIA is sensitive to both reductive dechlorination and oxidation
- Microbial degradation with KB-1, for example
- Recognizes impact of electron donor
- Can be used to understand multiple sources, which could impact perceived MNA success


CSIA – cont'd

- Additionally, CSIA can add clarification of contaminant rebound
 - Desorbed mass
- Ideal implementation for 1-D CSIA is center plume analysis tying near source samples with edge of plume samples
- Additionally, CSIA can supplement data detailing plume evolution earlier slide


CSIA Forensics


- By adding additional isotopes to the analysis, isotopic signatures (fingerprints) can be determined
- Adding the forensic aspect provides support in identification of multiple sources, off site contribution (co-mingled plumes)



- Site near New York City
 - Industrial area
 - PCE and TCE issues
- Associated vapor intrusion issue
- Groundwater flow complex both vertically and horizontally
- Inconsistent concentrations lead to CSIA being evaluated
- Questions to be answered

Conclusions – cont'd:

- Physical location of the two PCE sources suggested the client was not the responsible party.
- Cost of analysis and interpretive reporting was around \$26,000.
- The cost of the remediation was shared saving the client upwards of seven figures.

Conclusions

- Monitoring Natural Attenuation at remediation sites is key to move towards the ultimate goal of closure.
- Utilizing all tools available is fundamental in expediting towards goal
- Low level analysis provides a more distinct picture than standard analysis with high reporting limits
- CSIA can facilitate information for CSM data gaps and streamline remediation efficiency
- Use of forensic analysis can contribute to understanding "outside" influences

Specialty Services

Questions?

Joshua Richards

Program Manager – Pace Analytical Energy Services

Joshua.richards@pacelabs.com

317-502-9594

