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« What is the best remediation pproach?

* Once implemented is the remediation strategy working?
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Laboratory “bench-scale” testing

Use site soil, sediment or rock and groundwater
Microcosms or columns constructed using site materials
Customize treatment variables to meet site specific needs

Monitor contaminant degradation under various condition

Site-specific remediation recommendations reported



Treatability studies are typically
microcosm or column tests for
technologies including:

* Anaerobic and aerobic
bioremediation

* |In situ chemical reduction
(e.g., ZVI)

* |n situ chemical oxidation

e Sediment remediation
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Microcosm Study Typical Design
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Sterile Control Active Control Biostimulation  Bioaugmentation+  Gas Addition
autoclaved and unamended addition of Biostimulation H, /O, addition etc.
poisoned to organic addition of known  To measure impact
inhibit microbes electron donors  degrading of gas infusion
measure populations e.g., /cometabolic
possible abiotic KB-1 processes e.g.
losses propane addition

Treatability studies are custom designed for each site
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== What Treatability Studies Can Tell You?

Electron donor/acceptor/cometabolite consumption
« Degradation intermediates/pathways

 Effect of controlling variables (e.g., pH, redox, amendment
addition, inhibitory effects, oxidant demand, persulfate
activators)

« Residence time/longevity for PRBs

« Contaminant degradation rates/lag times

Insight into pilot—test design
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Why Use a Treatability Test?

Allows evaluation of multiple remedial options prior to field
Implementation

Optimization of a selected remedy

Studies are flexible allowing changes “on the fly” in the lab
Regulatory approval for injections is not required
Manageable, incremental risk from lab to pilot to full-scale

Reassures stakeholders that the selected remediation approach
IS feasible prior to field implementation
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== Case Study: Denmark Site

Mixed chlorinated ethenes and ethanes

1,1,1-TCA (5 mg/L) and TCE (5mg/L)

Can potential inhibition by 1,1,1-TCA be overcome?
Is ISCO with persulfate viable remedial option?

Study Design:

* Anaerobic Sterile Control

* Anaerobic Active Control

* EVO Amended/KB-1° Plus Bioaugmented
* Base Activated Persulfate
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== Case Study: Denmark Site
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== Case Study: Denmark Site

Activated Persulfate
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== Conclusions-Denmark Study

e Biostimulation alone=no dechlorination TCE/1,1,1-TCA

e KB-1® Plus bioaugmentation + biostimulation= rapid
dechlorination-but with chloroethane accumulation

e Activated persulfate complete and rapid degradation of
TCE slower and incomplete for 1,1,1-TCA

Based on study results enhanced bioremediation was
selected as site remedy
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== Treatability Study for Active Cap Optimization

* Bench-scale treatability test to evaluate how
much activated carbon (SediMite™) to add
a PCB-impacted sediment

* PCB availability was measured because
addition of the carbon changes availability
not total PCB concentration

* Availability measured via SIREM passive
samplers (SP3™) in site sediment amended
with different SediMite™ |loading rates

g: SiREM Image courtesy of SediMit



== Case Study: PCB Active Cap Optimization

99% 98%

Study results revealed
significant reduction in PCB
availability even at low
SediMite loadings (1-3%)

% Reduction in PCB Pore
Water Concentration
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SediMite™ Loading Rate (%)

Study cost~$10K findings saved more than $300K in excess
SediMite costs
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Treatability Testing Aided Decision Making

Kansas site with high concentration mixed
VOCs including dichloromethane

« MW-1:10 mg/L DCM attenuated
successfully
MW-13: 200 mg/L DCM-degradation
not observed

« Treatabllity testing indicated that
>160 mg/L DCM was not biodegradable
with available bioaugmentation cultures

500 tons of soil iIn MW-13 area removed
In 2009 to remove DCM source area

Study justified moving quickly to excavation
saved time and money on likely futile
bioremediation attempt
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== Molecular Genetic Testing

For site remediation typically DNA based
tests on groundwater/soill

Quantitative polymerase chain reaction
(gPCR) tests used to quantify specific
microorganisms and functional genes
critical to bioremediation processes

Next generation sequencing (NGS) to
characterize entire microbial population

Bubble plot output from NGS report (right)
indicates the relative proportion of the major
microbes in a sample
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== Overview of Gene-Trac® gPCR Testing

4) Extract DNA
from filter

3) Filter groundwater water

samples (NA for field filter)
1) Groundwater Sampling

Fluorescence
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7) qPCR output used to calculate gene 6) PCR amplify specific genes C
copies /L groundwater (e.g., 16S rRNA/vcrA) with targeted 5) Assemble PCR Reactions
primers in qPCR Machine
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Gene-Trac™
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Uses of Molecular Genetic Testing in Bioremediation

Initial Assessment:

* Are the required microorganisms indigenous to the site?

f"" ~. T ::‘
* Is MNA feasible? ( l N N~
;' = e Y s ~~ : - voh countiL)
) Lo e |
* Is bioaugmentation required? (O I
Ongoing Monitoring: U R rememmrmns = il
_ Dhc concentrations at 8 Acre FEW AFB
* Impact of site amendments? KB-1 bioaugmented site as determined by

Gene-Trac®testing

Increases growth rate and spread of biodegradative microbes

Assess impacts of negative events (e.g., redox changes, pH declines)

Is remediation progressing effectively at all locations?



Dhc Growth Dynamics

Dhc at a site move through microbial growth curve
Dhc in groundwater commonly range from ND to billions (e.g., 10°) per liter
Ethene is dependably observed at >107 Dhc per liter

Wide range of in situ Dhc doubling times observed—indicator of health of
population and the suitability of conditions

3

Changes in Dhc population may occur
even where VOC or ethene numbers are
not changing —e.g., DNAPL sites

Dhc testing gives advance notice and
ongoing assessment of suitability of site
conditions for reductive dechlorination

Log of numbers of bacteria
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Figure 2. lllustration of '°C enrichment during
degradation of a contaminant with a C-Cl bond.
Source: Microseeps, Inc., 2010, used with permission.
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Use of Compound Specific Isotope Analysis (CSIA)
to Confirm 1,1,1-TCA Degradation (Douglas, 2015)

Before Bioaugmentation

722.3%o IW-28/29
-18.6%

— 23 2%
[W-32 =) -25.8% 4395,

b.d.lL

105 Days After Bioaugmentation

-18.4%

b.d.l «25.5%0 -28.7%e -13.8%0 n.d. -23.3%e
IW-41 ‘ -26.6% ‘-12 T%e
A B
Well A[1,1,1-TCA] A33C | Estimate of Extent of Biodegradation
IW-24 -370 pgl/L +4.4% 69% to 71%
IW-28 +100 pg/L -2.5%o Not dominant process
IW-29 +11400 ug/L -2.4%o Not dominant process
0 0
IW-32 +160 pglL +8.5%o 0% 10 91% .
(even with increasing concentration)
IW-33 -150 pg/L +2.7%o 52% to 54%
IW-38 -5930 pg/L +5.4%0 77% to 79%
IW-41 -1130 pg/L +13.9%o0 98%




== Summary and Conclusions

Treatability and molecular testing aid planning and assessment
Provide evidence that is not always available from other types of testing

The costs of this type of tests are often offset by O&M savings due to
Improved planning & implementation

Decreased uncertainty as treatability data provides
preview of success prior to field implementation

— = Less Stress!

Molecular data provides performance preview and
assessment during remedy implementation
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Further Information
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1-866-251-1747
519-515-0836

Phil Dennis: pdennis@siremlab.com

== SIREM


mailto:pdennis@siremlab.com

